Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

(Benzohydrazidato- $\kappa^2 N'$,O)[2-(benzoylhydrazono- $\kappa^2 N$,O)propionato- κ O]oxidovanadium(V)

Hon Wee Wong, Kong Mun Lo and Seik Weng Ng*

Department of Chemistry, University of Malaya, 50603 Kuala Lumpur, Malaysia Correspondence e-mail: seikweng@um.edu.my

Received 14 March 2009; accepted 16 March 2009

Key indicators: single-crystal X-ray study; T = 123 K; mean σ (C–C) = 0.003 Å; R factor = 0.034; wR factor = 0.091; data-to-parameter ratio = 15.8.

The V^V atom in the title compound, $[VO(C_7H_7N_2O)-(C_{10}H_8N_2O_3)]$, is *N*,*O*-chelated by the benzohydrazidate anion and *O*,*N*,*O*'-chelated by the 2-(benzoylhydrazono)propionate dianion. The distorted octahedral trans-N₂O₄ coordination geometry is completed by the vandadyl O atom. Molecules are linked by N-H···O hydrogen bonds into a supramolecular chain structure parallel to [010].

Related literature

For other benzoylhydrazido–oxovanadium compounds, see: Kopka & Mattes (1995); Sundheim *et al.* (1994).

Experimental

Crystal data

 $\begin{bmatrix} V(C_7H_7N_2O)(C_{10}H_8N_2O_3)O \end{bmatrix}$ $M_r = 406.27$ Monoclinic, $P2_1/n$ a = 10.9424 (2) Å b = 6.2384 (1) Å c = 25.7215 (5) Å $\beta = 96.603$ (1)°

Data collection

Bruker SMART APEX diffractometer Absorption correction: multi-scan (SADABS; Sheldrick, 1996) $T_{min} = 0.816, T_{max} = 0.982$

Refinement

$R[F^2 > 2\sigma(F^2)] = 0.034$	
$wR(F^2) = 0.091$	
S = 1.00	
4010 reflections	
253 parameters	
2 restraints	

V = 1744.18 (5) Å³ Z = 4Mo K α radiation $\mu = 0.61 \text{ mm}^{-1}$ T = 123 K $0.35 \times 0.10 \times 0.03 \text{ mm}$

11614 measured reflections 4010 independent reflections 3330 reflections with $I > 2\sigma(I)$ $R_{\text{int}} = 0.027$

Table 1 Hydrogen-bond geometry (Å, °).

$D - H \cdots A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - H \cdots A$
$\begin{array}{c} N3 - H3 \cdots O4^{i} \\ N4 - H4 \cdots O3^{i} \end{array}$	0.87(1) 0.88(1)	1.97 (1) 2.05 (1)	2.823 (2) 2.861 (2)	164 (2) 154 (2)
Symmetry code: (i)	$-r + \frac{3}{2}v - \frac{1}{2} - \frac{3}{2}v$	3		

Symmetry code: (i) $-x + \frac{3}{2}, y - \frac{1}{2}, -z + \frac{3}{2}$.

Data collection: *APEX2* (Bruker, 2008); cell refinement: *SAINT* (Bruker, 2008); data reduction: *SAINT*; program(s) used to solve structure: *SHELXS97* (Sheldrick, 2008); program(s) used to refine structure: *SHELXL97* (Sheldrick, 2008); molecular graphics: *X-SEED* (Barbour, 2001); software used to prepare material for publication: *publCIF* (Westrip, 2009).

We thank the University of Malaya (grant Nos. FS339/2008 A and PS206/2008 A) for supporting this study.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: TK2396).

References

Barbour, L. J. (2001). J. Supramol. Chem. 1, 189-191.

- Bruker (2008). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.
- Kopka, K. & Mattes, R. (1995). Z. Naturforsch. Teil B, 50, 1281-1286.
- Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.

Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.

Sundheim, A., Theers, C. & Mattes, R. (1994). Z. Naturforsch. Teil B, 49, 176– 185.

Westrip, S. P. (2009). publCIF. In preparation.

supplementary materials

Acta Cryst. (2009). E65, m422 [doi:10.1107/S1600536809009520]

(Benzohydrazidato- $\kappa^2 N', O$)[2-(benzoylhydrazono- $\kappa^2 N, O$)propionato- κO]oxidovanadium(V)

H. W. Wong, K. M. Lo and S. W. Ng

Comment

(type here to add)

Experimental

2-[Benzoylhydrazono]propionic acid (0.66 g, 3.2 mmol), prepared from the condensation reaction of benzhydrazide and pyruvic acid, was dissolved in of ethanol (50 ml). It was then mixed with vanadyl sulfate (0.26 g, 1.6 mmol) in distilled water (20 ml) and the mixture was heated for 5 h. Upon slow evaporation of the filtrate, red crystals formed.

Refinement

Carbon-bound H-atoms were placed in calculated positions (C—H 0.95 to 0.98 Å) and were included in the refinement in the riding model approximation, with U(H) set to 1.2-1.5U(C).

The nitrogen-bound H-atoms were located in a difference Fourier map, and were refined with a distance restraint of N–H 0.88 ± 0.01 Å; their U_{iso} values were freely refined.

Figures

Fig. 1. Thermal ellipsoid plot (Barbour, 2001) of VO($C_7H_7N_2O$)($C_{10}H_8N_2O_3$) at the 70% probability level. Hydrogen atoms are drawn as spheres of arbitrary radius.

(Benzohydrazidato- $\kappa^2 N', O$)[2-(benzoylhydrazono- $\kappa^2 N, O$)propionato- κO]oxidovanadium(V)

Crystal data	
[V(C ₇ H ₇ N ₂ O)(C ₁₀ H ₈ N ₂ O ₃)O]	$F_{000} = 832$
$M_r = 406.27$	$D_{\rm x} = 1.547 \ {\rm Mg \ m}^{-3}$
Monoclinic, $P2_1/n$	Mo $K\alpha$ radiation $\lambda = 0.71073$ Å
Hall symbol: -P 2yn	Cell parameters from 3550 reflections
a = 10.9424 (2) Å	$\theta = 2.9 - 28.0^{\circ}$
b = 6.2384 (1) Å	$\mu = 0.61 \text{ mm}^{-1}$
c = 25.7215 (5) Å	T = 123 K
$\beta = 96.603 \ (1)^{\circ}$	Prism, red

 $V = 1744.18 (5) \text{ Å}^3$ Z = 4

Data collection

Bruker SMART APEX diffractometer	4010 independent reflections
Radiation source: fine-focus sealed tube	3330 reflections with $I > 2\sigma(I)$
Monochromator: graphite	$R_{\rm int} = 0.027$
T = 123 K	$\theta_{\text{max}} = 27.5^{\circ}$
ω scans	$\theta_{\min} = 1.6^{\circ}$
Absorption correction: Multi-scan (SADABS; Sheldrick, 1996)	$h = -14 \rightarrow 14$
$T_{\min} = 0.816, \ T_{\max} = 0.982$	$k = -8 \rightarrow 7$
11614 measured reflections	<i>l</i> = −32→33

 $0.35 \times 0.10 \times 0.03 \text{ mm}$

Refinement

Refinement on F^2	Secondary atom site location: difference Fourier map
Least-squares matrix: full	Hydrogen site location: inferred from neighbouring sites
$R[F^2 > 2\sigma(F^2)] = 0.034$	H atoms treated by a mixture of independent and constrained refinement
$wR(F^2) = 0.091$	$w = 1/[\sigma^2(F_o^2) + (0.0443P)^2 + 0.9013P]$ where $P = (F_o^2 + 2F_c^2)/3$
S = 1.00	$(\Delta/\sigma)_{\rm max} = 0.001$
4010 reflections	$\Delta \rho_{max} = 0.39 \text{ e} \text{ Å}^{-3}$
253 parameters	$\Delta \rho_{min} = -0.38 \text{ e } \text{\AA}^{-3}$
2 restraints	Extinction correction: none
Primary atom site location: structure-invariant direct methods	

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (A^2)

	x	У	Ζ	$U_{\rm iso}*/U_{\rm eq}$
V1	0.63939 (3)	0.51362 (5)	0.667678 (11)	0.02025 (10)
01	0.71456 (13)	0.3013 (2)	0.65899 (5)	0.0310 (3)
O2	0.47660 (11)	0.4125 (2)	0.63552 (5)	0.0252 (3)
O3	0.77761 (11)	0.7223 (2)	0.66978 (4)	0.0227 (3)
O4	0.87206 (11)	0.9694 (2)	0.62563 (5)	0.0250 (3)
O5	0.53800 (11)	0.7850 (2)	0.69541 (4)	0.0229 (3)
N1	0.49712 (13)	0.6388 (3)	0.56603 (5)	0.0230 (3)
N2	0.60460 (13)	0.6815 (2)	0.59808 (5)	0.0200 (3)
N3	0.57784 (13)	0.6090 (2)	0.76970 (5)	0.0204 (3)
Н3	0.582 (2)	0.584 (4)	0.8033 (4)	0.039 (6)*
N4	0.63345 (14)	0.4678 (2)	0.73974 (6)	0.0213 (3)
H4	0.6650 (17)	0.363 (3)	0.7597 (7)	0.029 (6)*
C1	0.32064 (16)	0.4069 (3)	0.56296 (7)	0.0235 (4)

C2	0.26918 (17)	0.4956 (3)	0.51595 (7)	0.0271 (4)
H2	0.3101	0.6096	0.5006	0.033*
C3	0.15882 (18)	0.4191 (3)	0.49134 (8)	0.0316 (4)
H3A	0.1242	0.4805	0.4592	0.038*
C4	0.09839 (18)	0.2527 (3)	0.51358 (8)	0.0346 (5)
H4A	0.0221	0.2011	0.4968	0.041*
C5	0.14961 (19)	0.1621 (4)	0.56019 (8)	0.0366 (5)
Н5	0.1086	0.0477	0.5754	0.044*
C6	0.26067 (19)	0.2380 (3)	0.58478 (8)	0.0330 (5)
Н6	0.2959	0.1747	0.6166	0.040*
C7	0.43810 (16)	0.4902 (3)	0.58978 (7)	0.0221 (4)
C8	0.67646 (16)	0.8356 (3)	0.58852 (7)	0.0217 (4)
C9	0.78589 (16)	0.8481 (3)	0.62982 (6)	0.0212 (4)
C10	0.65613 (17)	0.9934 (3)	0.54563 (7)	0.0273 (4)
H10A	0.6174	0.9223	0.5139	0.041*
H10B	0.7352	1.0546	0.5388	0.041*
H10C	0.6022	1.1080	0.5557	0.041*
C11	0.52823 (15)	0.7794 (3)	0.74341 (6)	0.0191 (3)
C12	0.46480 (15)	0.9478 (3)	0.77016 (7)	0.0207 (4)
C13	0.41422 (15)	1.1174 (3)	0.73968 (7)	0.0235 (4)
H13	0.4241	1.1237	0.7035	0.028*
C14	0.34966 (17)	1.2765 (3)	0.76211 (8)	0.0297 (4)
H14	0.3142	1.3913	0.7413	0.036*
C15	0.33666 (18)	1.2683 (3)	0.81518 (8)	0.0341 (5)
H15	0.2914	1.3766	0.8305	0.041*
C16	0.38955 (18)	1.1029 (4)	0.84576 (8)	0.0335 (5)
H16	0.3821	1.1002	0.8822	0.040*
C17	0.45334 (17)	0.9412 (3)	0.82367 (7)	0.0275 (4)
H17	0.4889	0.8270	0.8447	0.033*

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U ³³	U^{12}	U^{13}	U^{23}
V1	0.02461 (16)	0.02017 (17)	0.01501 (15)	0.00332 (12)	-0.00179 (11)	-0.00063 (11)
01	0.0386 (8)	0.0277 (7)	0.0250 (7)	0.0083 (6)	-0.0030 (6)	-0.0049 (6)
O2	0.0300 (7)	0.0264 (7)	0.0178 (6)	-0.0041 (6)	-0.0026 (5)	0.0027 (5)
O3	0.0242 (6)	0.0258 (7)	0.0172 (6)	0.0014 (5)	-0.0019 (5)	-0.0025 (5)
O4	0.0224 (6)	0.0308 (7)	0.0215 (6)	-0.0022 (5)	0.0014 (5)	-0.0059 (5)
O5	0.0279 (6)	0.0242 (7)	0.0165 (6)	0.0053 (5)	0.0026 (5)	0.0028 (5)
N1	0.0215 (7)	0.0289 (8)	0.0172 (7)	-0.0031 (6)	-0.0030 (6)	0.0004 (6)
N2	0.0206 (7)	0.0252 (8)	0.0137 (6)	0.0013 (6)	-0.0007 (5)	-0.0025 (6)
N3	0.0226 (7)	0.0220 (8)	0.0160 (7)	0.0002 (6)	0.0002 (6)	0.0015 (6)
N4	0.0241 (7)	0.0199 (8)	0.0190 (7)	0.0034 (6)	-0.0016 (6)	0.0014 (6)
C1	0.0243 (9)	0.0263 (9)	0.0196 (8)	-0.0021 (7)	0.0010 (7)	-0.0026 (7)
C2	0.0265 (9)	0.0267 (10)	0.0273 (9)	-0.0012 (8)	-0.0003 (7)	0.0026 (8)
C3	0.0283 (10)	0.0350 (11)	0.0292 (10)	0.0044 (9)	-0.0060 (8)	-0.0004 (9)
C4	0.0261 (10)	0.0374 (12)	0.0386 (11)	-0.0060 (9)	-0.0035 (8)	-0.0076 (9)
C5	0.0387 (11)	0.0377 (12)	0.0330 (11)	-0.0150 (10)	0.0019 (9)	-0.0001 (9)

supplementary materials

C6	0.0381 (11)	0.0372 (12)	0.0224 (9)	-0.0108 (9)	-0.0021 (8)	0.0017 (8)
C7	0.0256 (9)	0.0230 (9)	0.0173 (8)	0.0005 (7)	0.0007 (7)	-0.0019 (7)
C8	0.0229 (8)	0.0244 (9)	0.0176 (8)	0.0020 (7)	0.0016 (7)	-0.0030 (7)
C9	0.0222 (8)	0.0236 (9)	0.0176 (8)	0.0049 (7)	0.0009 (6)	-0.0065 (7)
C10	0.0277 (9)	0.0282 (10)	0.0249 (9)	-0.0042 (8)	-0.0024 (7)	0.0036 (8)
C11	0.0180 (8)	0.0206 (8)	0.0180 (8)	-0.0017 (7)	-0.0004 (6)	0.0006 (7)
C12	0.0154 (8)	0.0232 (9)	0.0236 (9)	-0.0025 (7)	0.0036 (6)	-0.0017 (7)
C13	0.0186 (8)	0.0254 (9)	0.0266 (9)	-0.0025 (7)	0.0027 (7)	0.0008 (7)
C14	0.0227 (9)	0.0252 (10)	0.0408 (11)	0.0006 (8)	0.0023 (8)	0.0005 (8)
C15	0.0262 (10)	0.0337 (11)	0.0436 (12)	0.0012 (8)	0.0095 (9)	-0.0120 (9)
C16	0.0339 (10)	0.0403 (12)	0.0280 (10)	-0.0011 (9)	0.0109 (8)	-0.0078 (9)
C17	0.0267 (9)	0.0329 (10)	0.0235 (9)	0.0014 (8)	0.0053 (7)	-0.0009 (8)

Geometric parameters (Å, °)

V1—01	1.589 (1)	С3—НЗА	0.9500
V1—O2	1.979 (1)	C4—C5	1.384 (3)
V1—O3	1.992 (1)	C4—H4A	0.9500
V1—O5	2.188 (1)	C5—C6	1.387 (3)
V1—N2	2.071 (1)	С5—Н5	0.9500
V1—N4	1.884 (2)	С6—Н6	0.9500
O2—C7	1.297 (2)	C8—C10	1.476 (3)
O3—C9	1.304 (2)	C8—C9	1.509 (2)
O4—C9	1.223 (2)	C10—H10A	0.9800
O5—C11	1.252 (2)	C10—H10B	0.9800
N1—C7	1.319 (2)	C10—H10C	0.9800
N1—N2	1.382 (2)	C11—C12	1.473 (2)
N2—C8	1.283 (2)	C12—C13	1.393 (3)
N3—C11	1.341 (2)	C12—C17	1.397 (2)
N3—N4	1.359 (2)	C13—C14	1.382 (3)
N3—H3	0.874 (9)	С13—Н13	0.9500
N4—H4	0.879 (9)	C14—C15	1.389 (3)
C1—C2	1.389 (3)	C14—H14	0.9500
C1—C6	1.393 (3)	C15—C16	1.383 (3)
C1—C7	1.481 (2)	C15—H15	0.9500
C2—C3	1.382 (3)	C16—C17	1.385 (3)
С2—Н2	0.9500	C16—H16	0.9500
C3—C4	1.389 (3)	C17—H17	0.9500
O1—V1—N4	95.10 (7)	С4—С5—Н5	120.0
O1—V1—O2	97.53 (7)	С6—С5—Н5	120.0
N4—V1—O2	103.39 (6)	C5—C6—C1	120.22 (19)
01—V1—03	98.34 (7)	С5—С6—Н6	119.9
N4—V1—O3	100.63 (6)	С1—С6—Н6	119.9
O2—V1—O3	149.76 (5)	O2—C7—N1	123.88 (16)
O1—V1—N2	110.29 (6)	O2—C7—C1	117.71 (16)
N4—V1—N2	154.60 (6)	N1—C7—C1	118.41 (15)
O2—V1—N2	74.50 (5)	N2—C8—C10	126.85 (16)
O3—V1—N2	75.90 (5)	N2—C8—C9	110.97 (15)
01—V1—05	168.87 (6)	C10—C8—C9	122.07 (16)

N4—V1—O5	73.77 (5)	O4—C9—O3	124.44 (16)
O2—V1—O5	85.25 (5)	O4—C9—C8	121.82 (16)
O3—V1—O5	84.11 (5)	O3—C9—C8	113.73 (15)
N2—V1—O5	80.84 (5)	C8—C10—H10A	109.5
C7—O2—V1	116.27 (11)	C8—C10—H10B	109.5
C9—O3—V1	119.54 (11)	H10A-C10-H10B	109.5
C11—O5—V1	113.82 (11)	C8—C10—H10C	109.5
C7—N1—N2	106.71 (14)	H10A-C10-H10C	109.5
C8—N2—N1	121.87 (15)	H10B-C10-H10C	109.5
C8—N2—V1	119.25 (12)	O5-C11-N3	116.36 (15)
N1—N2—V1	118.51 (11)	O5-C11-C12	122.63 (15)
C11—N3—N4	114.16 (14)	N3—C11—C12	121.00 (15)
C11—N3—H3	127.7 (16)	C13—C12—C17	120.13 (16)
N4—N3—H3	118.0 (16)	C13—C12—C11	117.19 (15)
N3—N4—V1	121.87 (11)	C17—C12—C11	122.68 (16)
N3—N4—H4	108.9 (13)	C14—C13—C12	119.97 (17)
V1—N4—H4	129.3 (13)	C14—C13—H13	120.0
C2—C1—C6	119.31 (17)	С12—С13—Н13	120.0
C2—C1—C7	120.58 (16)	C13—C14—C15	119.90 (19)
C6—C1—C7	120.11 (17)	C13—C14—H14	120.0
C3—C2—C1	120.43 (18)	C15—C14—H14	120.0
С3—С2—Н2	119.8	C16-C15-C14	120.17 (18)
С1—С2—Н2	119.8	C16—C15—H15	119.9
C2—C3—C4	120.11 (19)	C14—C15—H15	119.9
С2—С3—НЗА	119.9	C15—C16—C17	120.52 (18)
С4—С3—НЗА	119.9	C15—C16—H16	119.7
C5—C4—C3	119.82 (19)	С17—С16—Н16	119.7
C5—C4—H4A	120.1	C16—C17—C12	119.28 (18)
C3—C4—H4A	120.1	С16—С17—Н17	120.4
C4—C5—C6	120.10 (19)	С12—С17—Н17	120.4

Hydrogen-bond geometry (Å, °)				
D—H···A	<i>D</i> —Н	$H \cdots A$	$D \cdots A$	D—H··· A
N3—H3····O4 ⁱ	0.87(1)	1.97 (1)	2.823 (2)	164 (2)
N4—H4····O3 ⁱ	0.88 (1)	2.05 (1)	2.861 (2)	154 (2)
Symmetry codes: (i) $-x+3/2$, $y-1/2$, $-z+3/2$.				

